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Abstract

In this appendix, we describe the priors assumed for the parameters, the sampling

algorithm for the posterior distribution, and the approach for computing Bayes factor.

We also evaluate the time-varying approach against the classical approach of Granger

causality testing in a series of simulation exercises.



This Internet Appendix is structured as follows. In Section A, we describe the prior

distributions of the parameters. In Section B, we explain the Markov Chain Monte Carlo

(MCMC) sampling algorithm. In Section C, we briefly highlight the estimation of Bayes

factor for evaluating the time-varying null hypothesis Hi j
0 t : B

(j i)
t = 0. In Section D, we

illustrate the results of the simulation exercises assessing the performance of the time-varying

parameter approach.

A. Priors

The priors of the initial states of the time-varying parameters, p(θ0), p(α0), p(lnh0),

p(ln q0), are assumed to be normally distributed, independent of each other, independent

of p(λ0 | ν) and independent of the hyperparameters, which are the elements of Zη, Zω, S

and ν. They are calibrated based on a constant-coefficient VAR(1), with Gaussian errors,

estimated with a training sample of 36 monthly observations, over the period 1990-1994.

The prior for the initial states of the time-varying coefficients, p(θ0), is,

θ0 ∼ N (θ̂OLS, P̂OLS),

where θ̂OLS corresponds to the OLS estimates for the training sample and P̂OLS to four times

the covariance matrix V̂ (θ̂OLS) of the OLS estimate.

For α0 and lnh0 we follow Baumeister and Peersman (2013) and Primiceri (2005). Let

Σ̂OLS be the estimated covariance matrix of ut from the time-invariant VAR, and let C =

AD1/2 be the Choleski factor of Σ̂OLS, where A is lower diagonal with ones across its diagonal

and D1/2 is a diagonal matrix. Then, we set

lnh0 ∼ N (lnµ0, 10× IN),

where µ0 is the vector of diagonal elements of D and IN is the identity matrix of size N .1

Although the covariance matrix is chosen arbitrarily, it is set such that the prior is only

1For the analysis at the sectorial level, N is equal to the number of sectors, i.e. N = 4. For the analysis
at the financial institution level, we estimate the connections pairwise using several bivariate TVP-VARs,
therefore N = 2.
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weakly informative.

The prior for the contemporaneous correlations is set to

α0 ∼ N
(
α̃0, Ṽ (α̃)

)
,

where α̃0 is the lower diagonal elements of the inverse of A. The covariance matrix, Ṽ (α̃),

is assumed to be diagonal, and each diagonal element is set to ten times the absolute value

of the corresponding element in α̃0. This is done in order to account for the magnitude of

α̃0, whilst maintaining a very weakly informative prior (Benati and Mumtaz, 2007).

The prior for ln q0 is set following Baumeister and Benati (2013). Define Q̃0 = γ× Σ̂OLS,

with γ = 10−4, the same value used by Primiceri (2005) in the case of constant Qt. Then,

we set

ln q0 ∼ N (10−2 × ln q̃0, 10× IN ·(1+N))

where q̃0 is a vector collecting the elements on the diagonal of Q̃0.

Regarding λ0, we follow Jacquier, Polson, and Rossi (2004) and use a conjugate inverse

gamma prior,

(A.1) λ0 | ν ∼ IG
(
ν

2
,
ν

2

)
.

This means that λ0 ∼ ν/χ2(ν).

For the hyperparameter ν, again we follow Jacquier et al. (2004) and use a discrete

uniform prior on [3, 40]. A lower bound of 3 assures the existence of a conditional variance.

For computational convenience, we assume the matrices Zω and S to be independent. On

the other hand, because errors εt and ηt are correlated row-by-row, the prior for Ω cannot

be independent of Zη. We follow Jacquier et al. (2004) by considering a reparameterisation

of the two matrices.

Consider the submatrix V ∗i obtained by deleting all rows and columns of V except for
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the ith and the (i+N)th. Then,

V ∗i =

 1 ρiσi

ρiσi σ2
i

 .
As is done by Jacquier et al. (2004), we transform (ρi, σi) to (ψi, γi) as follows:

(A.2) V ∗i =

 1 ψi

ψi γi + ψ2
i

 .
The transformation is motivated by observing that the volatility innovation ηit can be written

as

ηi t = lnhi t − lnhi t−1 = σiρiεi t + σi

√
1− ρ2i ζi t with (ζi t, εi t) ∼ N(0, I2).

That is, ψi = σiρi can be interpreted as the coefficient in a regression of εi t on ηi t with

error variance γi = σ2
i (1− ρi)2. We use a normal prior for ψi and an inverse gamma for γi,

setting parameters as done by Jacquier et al. (2004). Thus,

ψ | γi ∼ N
(
ψ0 ,

γi
p0

)
,

and,

γi ∼ IG(d0t0 = 10−4 , d0 = 1),

where we set ψ0 = 0 and p0 = 2.

The prior on (ψi , γi) induces a prior distribution over (ρi , σi). This distribution is diffuse

on ρi, while ruling out very large correlations. The marginal prior on σi is very similar to

that used in the basic model with no leverage of Jacquier, Polson, and Rossi (1994).

We use an inverse-Gamma prior for the elements of Zω,

σ2
ω,i ∼ IG

(
10−4

2
,
10

2

)
, ∀i = 1, . . . , N.

The prior has the same mean that was used by Cogley, Primiceri, and Sargent (2010),

but it has a smaller variance, analogous to the one used by Baumeister and Benati (2013).
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The prior for the different blocks of S are set as follows. In the TVP-VAR including

the four sector indices, S is composed of three blocks each assumed to follow an inverted

Wishart, with prior degrees of freedom set to the minimum allowed:

Sk ∼ IW(S̄−1k , k + 1),

where k = 1, 2, 3. The scale matrices, S̄k, are diagonal, with diagonal elements set equivalent

to 10−4 times the absolute value of the relevant diagonal blocks of Ṽ (α̃0).

In the case of the bivariate TVP-VAR used to estimate pairwise connections between

systemically important financial institutions, S has only one block and is a scalar. Then,

S ∼ IG(S̄−1, 2),

with S̄ = 10−3× | α̃0 |.

B. Posterior distribution sampling

We simulate the posterior distribution of the states and the hyperparameters via the

following MCMC algorithm. In what follows, xt denotes the entire history of the vector x

up to time t–i.e. xt ≡ [x′1, x
′
2, . . . , x

′
t]
′– while T is the sample length.

B.1. Drawing the parameter states, θT

The conditional distribution of the TVP-VAR parameters, θT , can be expressed as:

p(θT |RT , λT , αT , hT , qT , ν, V ) =

p(θT | RT , λT , αT , hT , qT , ν, V )
T−1∏
t=1

p(θt | θt+1, R
T , λT , αT , hT , qT , ν, V )(A.3)

Given the prior assumptions above and the state-space model, the conditional densities

are normal and can be simulated using the algorithm proposed by Carter and Kohn (1994).

We can compute their means and variances through the forward and backward recursions

of the Kalman filter and smoother. The last iteration of the filter provides the mean and
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variance for the first term on the right hand side,

p(θT | RT , λT , αT , hT , qT , ν, V ) = N (θT |T , PT |T )

A draw from the distribution is used in the backward recursions to simulate the remaining

terms in equation (A.3). Conditional on the information in θt+1, θt is conditionally normal

with mean and variance given respectively by,

θt|t+1 = θt|t + Pt|tP
−1
t+1|t(θt+1 − θt|t),

Pt|t+1 = Pt|t − Pt|tP−1t+1|tPt|t

The backward recursions draw sequentially θT−1, θT−2, . . . , θ1 from the conditional distribu-

tion,

p(θt | θt+1, R
T , λT , αT , hT , qT , ν, V ) = N (θt|t+1, Pt|t+1),

in order to generate a random trajectory, θT .

Some studies from the macro literature choose to impose a stability condition so as to

exclude explosive paths for Bt in equation (1). This is done by assuming that the probability

density of Bt takes a value of zero when the roots of the TVP-VAR polynomial are inside

the unit circle. Others, such as Primiceri (2005), do not include this condition, because

they assume that the model holds for a finite period of time and not forever. Given that

we expect a VAR model on stock returns to have small coefficients (in absolute terms), we

follow Primiceri (2005) and do not impose a stability condition.

B.2. Drawing the contemporaneous interactions, αT

Given the data RT and draws of θT , hT , and λt, we can recover ut = Rt − X ′tθt from

Equation (1) and write Atut/
√
λt ≡ Atũt = ε∗t , where ε∗t is the vector of orthogonalised,

normally distributed, innovations with known time-varying variance, Ht = diag(ht).

From this, a system of unrelated regressions can be estimated to recover AT according
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to the following transformed equations:

ũ1t = ε∗1t

ũ2t = −α21tũ1t + ε∗2t
...

ũNt = −αN 1,tũ1t − αN2,tũ2 t − · · · − αN (N−1),tũN−1 t + ε∗N t

The coefficients of αt are drawn using the system above and the Kalman filter and

smoother equations explained in previous step.2

B.3. Drawing the stochastic volatilities, hT

Since the stochastic volatilities hi t and hj s are independent for all i 6= j and t, s, we draw

them on a univariate basis for each financial institution i = 1, . . . , N . To do this, we adopt a

modified version of the univariate algorithm by Jacquier et al. (1994), developed by Cogley,

Morozov, and Sargent (2005), and combine it with elements from Jacquier et al. (2004) in

order to account for the leverage effect ρ.

It follows that knowledge of hi t−1, hi t+1, ψi, γi and of the orthogonalised residuals ε∗it

(which we recover from RT , θT and αT ) are sufficient statistics for hi t. It follows that

p(hit | hi t−1, hi t+1, ψi, γi, ε
∗
it) ∝ h

−

(
3

2
+
ψiε
∗
it+1

γi
√
hi t+1

)
it exp

[
−ε∗it
2hit

(
1 +

ψ2
i

γi

)
− (lnhit − µit)2

γi
+
ψiε
∗
itηit

γi
√
hit

]
,

where µit = (lnhi t+1 − hi t−1)/2.

The non-standard form of the posterior does not allow direct sampling. Instead, we apply

the Metropolis accept/reject sampler developed by Cogley et al. (2005) with a log-normal

2For the analysis at the sectorial level, N is equal to the number of sectors, i.e. N = 4. For the analysis at
the financial institution level, we estimate connections pairwise using bivariate TVP-VARs, therefore N = 2.
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proposal density f̂ defined as

f̂(hi t) ∝ h−1i t exp

[
− (lnhit − µi t)2

2σi

]
.

where σi is recovered from drawing ψi and γi as shown below in Section B.7 of this appendix.

B.4. Drawing the stochastic volatilities of the states, qT

Given a draw of θT , we can recover the vector of innovation of the states vt = θt − θt−1.

Given that its variance, V (ωt) = Qt, is diagonal, we draw the diagonal elements qt one by

one as done for ht above. Again we apply the univariate algorithm of Jacquier et al. (1994)

with the log-normal proposal density of Cogley et al. (2005).

B.5. Drawing the latent variable, λt

Notice that, conditional on λt, At and Ht, the errors ut = (Rt − X ′tθt) are normal with

variance-covariance matrix Σt ≡ A−1t Ht(A
−1
t )′.

Then, notice that p(λT | uT ,ΣT , ν) =
∏T

t=1 p(λt | ut,Σt, ν). It follows that

p(λt | ut,Σt, ν) ∝ p(ut | λt,Σt, ν)p(λt | ν).

Using our conjugate prior in equation (A.1), we have that

p(λt | ut,Σt, ν) ∼ IG
(
u′t Σ−1t ut + ν

2
,
ν +N

2

)
.

B.6. Drawing the hyperparameter, ν

Given At, Ht, and ν, the errors ut are distributed as a multivariate t(ν) distribution with

scale matrix Σt. Then, ν is discrete with probability mass proportional to the product of t

distribution ordinates:

p(ν | Σt, ut) ∝ p(ν)p(ut | Σt, ν) = p(ν)
T∏
t=1

Γ
[
(ν +N)/2

]
Γ(ν/2) νN/2 πN/2

[
1 +

1

ν
u′t Σ−1t ut

]−(ν+N)/2

.
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B.7. Drawing the hyperparameters, Ω and Zη

Since ρi and ρj are independent for all i 6= j, we proceed by drawing each leverage effect

one at a time, following Jacquier et al. (2004).

Given draws of θT , αT , hT and λt we can recover the orthonormal vector of innovations,

εt = AtH
−1/2
t ut/λt. Moreover, given hT we can recover the vector of innovations from the

stochastic volatility equations, ηt = lnht − lnht−1.

Then, let wi t = [εi t, ηi t]
′ be the vector of innovations and Wi =

∑
twi tw

′
i t. Given the

re-parametrization of (ρi, σi) to (ψi, γi), the conditional posteriors follow by conjugacy of the

priors:

p(ψi | γi, hTi , εTi ) ∼ N
(
ψ̃i , γi/(W

(1 1)
i + p0)

)
p(γi | hTi , εTi ) ∼ IG

(
v0t

2
0 +W

(22).1
i , v0 + T − 1

)
with ψ̃ =

(
W

(1 2)
i + p0ψ0

)
/
(
W

(1 1)
i + p0

)
where W

(k l)
i denotes the (k, l) element of Wi and

W
(22).1
i = W

(2 2)
i −

(
W

(1 2)
i

)2
/W

(1 1)
i .

A draw of (ψi, γi) yields a draw of (ρi, σi) by σ2
i = ψ2

i + γi and ρi = ψi/σi.

B.8. Drawing the hyperparameters, Zω and S

Given draws of qT and αT , we can observe the innovations ωt = ln qt − ln qt−1 and

τt = αt − αt−1. Following conjugacy of the priors, we can draw the elements of Zω and the

elements of the blocks of S from their respective conditional posterior distributions.

For the empirical investigation at the sector level, we perform 30,000 iterations of the

Gibbs sampler and discard the first 10,000 draws. We then keep only the 5th of every draw

in order to mitigate autocorrelation among draws. The remaining sequence of 4,000 draws

forms a sample of the joint posterior distribution. We use this to estimate the parameters

and compute Bayes factor.

Similarly, for the empirical investigation at the financial institution level, for each bivari-

ate TVP-VAR estimated, we perform 6,000 iterations of the Gibbs sampler and discard the

first 1,000 draws. Again, we keep only the 5th of every draw. We used an analogous number
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of draws for the simulation study in Appendix D.

C. Bayesian inference

Denote by ΨT all parameters except the states θT , i.e., αT , HT , QT and given hyperpa-

rameters governing the priors. Then under the assumption that

(A.4) p(ΨT | B(j i)
t = 0) = p0(Ψ

T ),

Bayes factor will be given by the SDDR,

(A.5) K
(i j)
t =

p(B
(j i)
t = 0 | RT )

p(B
(j i)
t = 0)

.

The assumption given by equation (A.4) requires the prior for ΨT in the restricted model,

p0(Ψ
T ), to be the same as the prior in the unrestricted model evaluated at the point where

the restriction holds, p(ΨT | B(j i)
t = 0). This is amply satisfied if the same prior is used in

the restricted and unrestricted model for the parameters that are common to both models,

as we do here.

As explained by Koop, Leon-Gonzalez, and Strachan (2010), an estimate of the numerator

in equation (A.5) can be calculated using the simulations from the conditional posterior

p(θT | RT ,ΨT ). Given our conjugate Normal conditional prior for θt, the conditional posterior

distribution p(B
(j i)
t = 0 | RT ,ΨT ) is Normal. By simulating from p(B

(j i)
t = 0 | RT ,ΨT )

using a Gibbs sampler and averaging across draws, we obtain an estimate of the posterior

probability that the null hypothesis holds, p̂(B
(j i)
t = 0 | RT ). Similarly, the denominator

can be simulated by using a sequential sampler on the conditional priors p(B
(j i)
t = 0 | ΨT ),

and calculating the average across all draws, p̂(B
(j i)
t = 0).

D. Simulation study

In a series of simulation exercises, we assessed the ability of our time-varying framework

to infer the small causal network given in Figure A1. A similar exercise was conducted by

Seth (2010) using the same network. We chose this particular network because it is sparse
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and sparsity is an observed attribute of financial networks.3

The network’s underlying system is given by

x1t = α1t + φ1t x1 t−1 + ε1t

x2t = α2t + φ2t x2 t−1 + β21 t x1 t−1 + ε2t

x3t = α3t + φ3t x3 t−1 + β31 t x1 t−1 + ε3t

x4t = α4t + φ4t x4 t−1 + β41 t x1 t−1 + β45 t x5 t−1 + ε4t

x5t = α5t + φ5t x5 t−1 + β54 t x4 t−1 + ε5t

where, [ε1t . . . ε5t]
′ = εt ∼ N (0,Ω) and Ω = τ I5 where τ was set to 0.01. We chose to

limit the autoregressive component of the process to one lag, as is done by Barigozzi and

Brownlees (2017), so as to keep the simulation exercises computationally manageable.

We performed three different experiments in which the model VAR parameters were

allowed to vary according to the following processes:

1. Deterministic fixed constants drawn, at the beginning of each simulation, from a stan-

dard uniform distribution.

2. Markov switching between 0 and a random constant drawn, at the beginning of each

simulation, from a standard uniform distribution.

3. Smoothly time-varying, according to a unit root process.

For each experiment, we ran 100 simulations each of which involved T = 300 time periods.

In this straightforward exercise, we applied our framework without leverage effects (ρi =

0,∀i), without heavy tailed errors in the TVP-VAR (λt = 1, ∀t), and with constant time-

varying variance-covariance matrix (Σt = Σ, ∀t). Moreover, we assume constant variance for

the VAR parameters (Qt = Q,∀t).

We used the framework to infer all possible connections between variables. Paralleling

pairwise and conditional Granger causality, this was done in two alternative ways: 1) by

3The interested reader may refer to Barigozzi and Brownlees (2017) for an in-depth discussion on sparse
networks in finance.
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recursively using a bivariate TVP-VAR between every pair of variables, and 2) by running

the TVP-VAR on all five variables and inferring connections conditional on the system.

For means of comparison, we also carried out the same simulation exercises, using the

classical approach of Granger causality testing (by pairwise and conditional VARs) over

rolling windows. For this, we set the level of significance of the tests to 5%.

We assessed the performance of our framework with respect to three standard measures:

the mean-squared error (MSE) of the VAR parameter estimates, the receiver-operator char-

acteristic (ROC) curve and the precision-recall (PR) curve. We outline how each measure is

computed below.

We compute the MSE of the VAR parameter estimates by taking the sum, across all time

periods, of the squared difference between the estimated VAR parameters and the true VAR

parameters. This sum is then averaged across all simulations. The formula for the MSE of

the cross-parameters βi,j,t is given by

MSETV P
C =

∑
ij∈C

T∑
t=1

(β̂TV Pij t − βij t)2/T,

where C = {(2, 1), (3, 4), (3, 5), (4, 1), (4, 5), (5, 4)}.

For the classical Granger causality approach, parameters are estimated by ordinary least

squares (OLS) over rolling windows of size w = [20, 30, . . . , 200]′. Then the MSE is calculated

as

MSERW
C,w(s) =

∑
ij∈C

T∑
t=w(s)+1

(β̂RWij t − βij t)2/
(
T − w(s)

)
.

The step size for the rolling window calculation is set to 1.

To allow a fairer comparison between MSERW and the MSETV P
C across the same time

periods, we look at

MSETV P
C,w(s) =

∑
ij∈C

T∑
t=w(s)+1

(β̂TV Pij t − βij t)2/
(
T − w(s)

)
,

We also compared the performance of our time-varying parameter framework with that

of the classical Granger causality approach, by means of the ROC and PR curves.
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The ROC curve plots the true positive rate (TPR) against the false positive rate (FPR).

In our case, a positive refers to the existence of a connection between the two nodes in

question. Then the TPR is the ratio of the number of correctly inferred connections to the

number of existing connections. On the other hand, the FPR is the ratio of incorrectly

inferred connections to the number of non-existing connections. A high performing test

would combine low FPR with high TPR and therefore have a ROC curve in the upper-left

corner of the chart.

For time-varying parameter estimation, the ROC curve was calculated using the implied

probability from the estimated Bayes factor (K̂
(i j)
t /(1 + K̂

(i j)
t )), whereas for the classical

Granger causality approach, the p-value was used. All possible pairs, ij, i 6= j, were tested

and results were aggregated over all time periods and across all simulations.

The PR curve plots the precision, also known as the positive predictive value, against

the recall, i.e. the TPR. The precision is the fraction of correctly classified positives, i.e. the

ratio of connections correctly inferred to the total number of connections inferred. There

exists a one-to-one relationship between the ROC and precision-recall curve. If for a given

experiment a curve dominates in ROC space, then it will also dominate in precision-recall

space (Davis and Goadrich (2006)). However, looking at the PR curve can provide additional

insight in situations like ours, where the number of negatives exceeds by far the number of

positives. A high performing test would combine high precision with high TPR and therefore

have a PR curve in the upper-right corner of the chart.

Experiment 1: time-invariant connections

For the first experiment, we fix all VAR parameters to constants drawn at the beginning

of each simulation.

αi,t = ai, φi,t = fi, βi,j,t = bij, ∀t ∈ [0, T ],

where we draw parameters from a standard uniform distribution at the beginning of each

simulation, ai, fi, bij ∼ U(0, 1)3 for i = 1, . . . , 5 and (i, j) ∈ C.

The left panel of Figure A2 shows MSERW
w(s) (light dashed) and MSETV P

w(s) (bold solid).
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Notice that MSERW
w(s) is downward sloping in window size. This is because larger windows

lead to more precise estimates at the expense of less variability. Since the underlying pa-

rameters are constant, MSERW
w(s) decreases quickly with the window size. MSETV P

w(s) is not

downward sloping because, unlike the rolling window approach, the time-varying parameter

framework uses the whole length of the sample for estimation.

Results show that the time-varying framework performs better than the classical rolling

window approach, whether estimation is pairwise (top-left chart) or conditional on the other

variables of the system (bottom-left chart). The time-varying parameter framework does

well because the Kalman filter and smoother, used for the sampling algorithms, find the best

fit with the minimum predictive variance. Even when large rolling windows are used (above

100 observations) the time-varying parameter framework performs comparably well to the

classical approach.

We report the performance of our time-varying parameter framework in terms of ROC and

PR curves, respectively given in the middle and right panels of Figure A2 (bold solid). We

also show the ROC and PR curves associated with the classical Granger causality approach

(light dashed) estimated by rolling windows of size 200.4 This corresponds to two-thirds of

the observations in each simulation. It was also one of the best performing window sizes

across all three experiments.

The ROC curve for pairwise estimation (top-middle chart) shows that time-varying pa-

rameter inference performs comparably well compared to the classical approach with rolling

windows. In particular, it does slightly better than the classical approach at low combi-

nations of FPR and TPR. We obtain similar results when testing conditional relationships

(bottom-middle chart).

In terms of the PR curve, pairwise time-varying inference does well at combinations with

high precision and low recall (upper-right chart). Here the curve associated with time-varying

parameters (bold solid) is above that associated with the classical rolling windows approach

(light dashed). Similar results were found for conditional testing (lower-right chart). How-

ever, at higher combinations of precision and recall, the two approaches perform similarly,

4 ROC and PR curves calculated at other window sizes have been omitted for space concerns but are
available from the authors upon request.
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with the PR curve for the classical approach slightly above the time-varying counterpart.

Experiment 2: discretely time-varying connections

For the second experiment, the cross coefficients, βij t with subscripts ij ∈ C, of the

system were assumed to follow a switching process defined as

βij t =

0 if sijt = 0

bij if sijt = 1

where bij is drawn at the start of the simulation from a standard uniform distribution.

As in the first experiment, the intercept terms αit and autoregressive coefficients φit were

drawn from a standard uniform distribution at the beginning of each simulation and were

assumed to be constant through time.

Let sijt follow a first order Markov chain with the following transition matrix:

P =

P(sijt = 0 | sijt−1 = 0) P(sijt = 1 | sijt−1 = 0)

P(sijt = 0 | sijt−1 = 1) P(sijt = 1 | sijt−1 = 1)

 =

p00 p10

p01 p11


where we set p00 = 0.95 and p11 = 0.90.

Effectively, the transition matrix holds the probabilities of a link appearing and disap-

pearing between any two nodes ij ∈ C. In the matrix, p00 is the probability of no link

occurring between two nodes at time t, given that the two nodes were disconnected at time

t− 1. Similarly, p11 represents the probability of there being a link between two nodes at t,

given that these two nodes were already connected at t− 1.

The top-left and bottom-left charts of Figure A3 show the MSE for estimates found by,

respectively, pairwise estimation and full conditional estimation. When using pairwise testing

(top-left chart), results show that estimation using the time-varying parameter framework

is more precise than the classical approach only for small window sizes. When the window

size increases, the precision of the rolling window estimates increases. On the other hand,

with conditional testing (bottom-left chart), the time-varying parameter framework is more

precise than the classical approach for all window sizes. This confirms the Monte Carlo
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simulation results of Baumeister and Peersman (2013).

The ROC curves in the top-middle and bottom-middle charts of Figure A3 highlight the

gain obtained by using the time-varying parameter framework for inferring connections. For

pairwise inference, the ROC curve lies mostly above the corresponding curve for classical

Granger causality testing with rolling windows of size 200. On the other hand, when inferring

connections conditionally, classical Granger causality testing performs superiorly to the TVP-

VAR.

Similarly, for pairwise inference, the PR curves (top-right and bottom-right charts of

Figure A3) show substantial improvements using the time-varying parameter framework. In

the case of conditional testing, the PR curve associated with the time-varying parameter

framework appears above the corresponding curve for classical testing in areas of the chart

with low recall, while it lies slightly below for areas with higher recall. This indicates that,

in this case, our framework performs better when the network is sparse.

Experiment 3: smoothly time-varying connections

For the third experiment, the parameters of the system were allowed to evolve according

to the following random walk processes,

αi t+1 = αit + vαi t+1

φi t+1 = φit + vφi t+1

βij t+1 = βij t + vβi t+1,

where, vit = [vαit , v
φ
it , v

β
it]
′ and vit ∼ N (0,Γ). In turn, the variance of the parameters was set

to

Γ = q2 ×


1 0 0

0 2 0

0 0 3


where, q2 = 0.0002.

The variance of the parameters was set such that cross coefficients would be more variable

than the autoregressive parameters and, in turn, the autoregressive parameters would be
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more variable than the intercept terms.

As can be noticed from the top-left and bottom-left charts in Figure A4, the time-varying

parameters approach results in more precise parameter estimates, in terms of MSE, than the

classical approach using rolling windows. Notice that, quite contrary to what was found in

Experiment 1, the precision of the classical approach does not increase with window size.

Rather, gains from using larger windows reverse for windows of more than 60 observations,

showing that precision actually worsens when windows are too large. This highlights the

trade-off between higher confidence but less flexibility given by larger windows.

In terms of ROC curves, shown in the top-middle and bottom-middle charts, the curve

referring to the time-varying parameters approach lies completely above the one referring to

classical Granger causality testing by rolling windows of size 200.5

The same result was obtained for the PR curves shown in the top-right and bottom-

right charts. Here we notice that there is not much gain from using pairwise inference with

recursive bivariate TVP-VARs rather than conditional inference with the full TVP-VAR. On

the other hand, with the classical approach we see that using conditional testing leads to a

higher PR curve. However, this curve continues to remain below the curve associated with

the time-varying parameter framework meaning that our framework is better at inferring

connections across all combinations of precision and recall.

These results, together with those from Experiment 1 and 2, show that our proposed

framework provides more precise estimates of connections when the true underlying pro-

cess is either constant or smoothly changing through time. When changes are abrupt and

connections are pairwise estimated, our framework still performs well in terms of detect-

ing connections, but delivers less precise connection-strength estimates than the classical

approach. However, when connections are estimated conditionally, our framework performs

superiorly in terms of precision, and comparably well in terms of detection, even with abrupt

changes in the underlying process.

5 The results continue to hold for other window sizes.
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Tables

Table A1: Sample of Financial Institutions.

Table A1 presents the financial institutions used for the empirical investigation.

Banks Insurers Real Estate

AHMANSON (H F) & CO NORTHERN TRUST CORP ACE LTD AMERICAN CAPITAL LTD
AMERICAN EXPRESS CO OLD KENT FINANCIAL CORP AETNA INC AMERICAN TOWER CORP
AMSOUTH BANCORPORATION PEOPLE’S UNITED FINL INC AFLAC INC APARTMENT INVST & MGMT CO
ASSOCIATES FIRST CAP -CL A PNC FINANCIAL SVCS GROUP INC ALEXANDER & ALEXANDER AVALONBAY COMMUNITIES INC
BANK OF AMERICA CORP PROVIDIAN FINANCIAL CORP ALLSTATE CORP BOSTON PROPERTIES INC
BANK OF NEW YORK MELLON CORP REGIONS FINANCIAL CORP AMERICAN INTERNATIONAL GROUP CBRE GROUP INC
BANK ONE CORP SHAWMUT NATIONAL CORP AON PLC CROWN CASTLE INTL CORP
BANKBOSTON CORP SLM CORP ASSURANT INC DDR CORP
BARNETT BANKS INC STATE STREET CORP CHUBB CORP EQUITY OFFICE PROPERTIES TR
BB&T CORP SUMMIT BANCORP CIGNA CORP EQUITY RESIDENTIAL
BENEFICIAL CORP SUNTRUST BANKS INC CINCINNATI FINANCIAL CORP GENERAL GROWTH PPTYS INC
BOATMENS BANCSHARES INC SYNOVUS FINANCIAL CORP CNA FINANCIAL CORP HCP INC
CAPITAL ONE FINANCIAL CORP U S BANCORP CNO FINANCIAL GROUP INC HEALTH CARE REIT INC
CHASE MANHATTAN CORP -OLD VISA INC CONTINENTAL CORP HFS INC
CIT GROUP INC WACHOVIA CORP COVENTRY HEALTH CARE INC HOST HOTELS & RESORTS INC
CIT GROUP INC-OLD WACHOVIA CORP-OLD EXPRESS SCRIPTS HOLDING CO KIMCO REALTY CORP
CITICORP WASHINGTON MUTUAL INC GENWORTH FINANCIAL INC MACERICH CO
CITIGROUP INC WELLS FARGO & CO HANCOCK JOHN FINL SVCS INC PROLOGIS INC
COMERICA INC WELLS FARGO & CO -OLD HARTFORD FINANCIAL SERVICES PUBLIC STORAGE
COMMERCE BANCORP INC/NJ WESTERN UNION CO HUMANA INC SIMON PROPERTY GROUP INC
COMPASS BANCSHARES INC ZIONS BANCORPORATION JEFFERSON-PILOT CORP VENTAS INC
CONCORD EFS INC LINCOLN NATIONAL CORP VORNADO REALTY TRUST
CORESTATES FINANCIAL CORP LOEWS CORP WYNDHAM WORLDWIDE CORP

COUNTRYWIDE FINANCIAL CORP Brokers MCLENNAN COS

DISCOVER FINANCIAL SVCS INC AMERIPRISE FINANCIAL INC MBIA INC
FANNIE MAE BEAR STEARNS COMPANIES INC METLIFE INC
FEDERAL HOME LOAN MORTG CORP BLACKROCK INC MGIC INVESTMENT CORP/WI
FIFTH THIRD BANCORP CME GROUP INC PROGRESSIVE CORP-OHIO
FIRST CHICAGO NBD CORP E TRADE FINANCIAL CORP PROVIDENT COS INC
FIRST FIDELITY BANCORP FEDERATED INVESTORS INC PRUDENTIAL FINANCIAL INC
FIRST HORIZON NATIONAL CORP FRANKLIN RESOURCES INC SAFECO CORP
FIRST INTERSTATE BNCP GOLDMAN SACHS GROUP INC TORCHMARK CORP
FLEETBOSTON FINANCIAL CORP INTERCONTINENTALEXCHANGE GRP TRAVELERS COS INC
GOLDEN WEST FINANCIAL CORP INVESCO LTD U S HEALTHCARE INC
GREAT WESTERN FINANCIAL JANUS CAPITAL GROUP INC UNITEDHEALTH GROUP INC
HSBC FINANCE CORP LEGG MASON INC UNUM GROUP
HUDSON CITY BANCORP INC LEHMAN BROTHERS HOLDINGS INC USF&G CORP
HUNTINGTON BANCSHARES MERRILL LYNCH & CO INC USLIFE CORP
JPMORGAN CHASE & CO MORGAN STANLEY WELLPOINT HEALTH NETWRKS INC
KEYCORP NASDAQ OMX GROUP INC XL GROUP PLC
M & T BANK CORP NYSE EURONEXT
MARSHALL & ILSLEY CORP PAINE WEBBER GROUP
MASTERCARD INC PRICE (T. ROWE) GROUP
MBNA CORP PRINCIPAL FINANCIAL GRP INC
MELLON FINANCIAL CORP SCHWAB (CHARLES) CORP
MERCANTILE BANCORPORATION
MONEYGRAM INTERNATIONAL INC
NATIONAL CITY CORP
NORTH FORK BANCORPORATION
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Figures

Figure A1: The Causal Network

Figure A1 shows the causal network used for the simulation study.
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Figure A2: Results for Experiment 1

Figure A2 shows the results of Experiment 1, for which the underlying parameters are constant. The
light dashed line relates to results obtained using classical Granger causality testing over rolling windows,
while the bold solid line relates to results obtained using the proposed time-varying parameter framework.
The upper panel shows results for pairwise estimation and inference. The lower panel shows results using
conditional estimation and inference. The left column figures show the mean squared error of cross-
parameter estimates. The middle and right column figures show the ROC curves and the PR curves
for inference of the underlying network, with rolling window size set at 200 observations for the rolling
window approach.
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Figure A3: Results for Experiment 2

Figure A3 shows the results of Experiment 2, for which the underlying parameters follow a regime switching
process. The light dashed line relates to results obtained using classical Granger causality testing over
rolling windows, while the bold solid line relates to results obtained using the proposed time-varying
parameter framework. The upper panel shows results for pairwise estimation and inference. The lower
panel shows results using conditional estimation and inference. The left column figures show the mean
squared error of cross-parameter estimates. The middle and right column figures show the ROC curves
and the PR curves for inference of the underlying network, with rolling window size set at 200 observations
for the rolling window approach.
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Figure A4: Results for Experiment 3

Figure A4 shows the results of Experiment 3, for which the underlying parameters follow a random walk
process. The light dashed line relates to results obtained using classical Granger causality testing over
rolling windows, while bold solid line relates to results obtained using the proposed time-varying parameter
framework. The upper panel shows results for pairwise estimation and inference. The lower panel shows
results using conditional estimation and inference. The left column figures show the mean squared error
of cross-parameter estimates. The middle and right column figures show the ROC curves and the PR
curves for inference of the underlying network, with rolling window size set at 200 observations for the
rolling window approach.
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